博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Is functional analysis relevant to machine learning?
阅读量:4123 次
发布时间:2019-05-25

本文共 2682 字,大约阅读时间需要 8 分钟。

From Quora

One place where functional analysis is particularly relevant to machine learning is the study of kernel metho
ds, a notable ex
ample of which is the kernel Support Vector Machine
, where 
the theory of 
s (RKHS) from functional analysis plays a big role.


Every 
 
K
 (on any type of data) uniquely defines a Hilbert space 
\mathcal{H}
, called the RKHS with reproducing kernel 
K
, which satisfies a set of properties, and in particular provides a 'feature map' 
\phi
 from the original space to the RKHS, for which the kernel corresponds to an inner product: 
K(x,y) = \langle \phi(x), \phi(y) \rangle_\mathcal{H}
(in fact, we have 
\phi(x) = K(x,\cdot)
).


One can study the properties of such Hilbert spaces, which can be infinite-dimensional even when the input space on which the kernel is defined isn't. For example, the RKHS of a Gaussian kernel is infinite-dime
nsional, the RKHS of the min kernel 
K(x,y) = \min(x,y)
is a a Hilbert space similar to a Sobolev space (the inner product between two functions in the space is the integral of the product of their derivatives), and the polynomial kernel gives a space of polynomials.


One interesting property, which can be easily shown using the 'reproducing property' of the RKHS and the Cauchy-Schwarz inequality, is that for a function 
f \in \mathcal{H}
,

|f(x) - f(y)| \leq \|f\|_\mathcal{H} \|\phi(x) - \phi(y)\|_\mathcal{H}
,

i.e. 
f
 is Lipschitz with constant 
\|f\|_\mathcal{H}
: the variations of the function depend on the variations in the input space with respect to the geometry defined by the map 
\phi
. Basically the RKHS norm directly relates to the smoothness of the function (the smaller the norm, the smaller the variations).


These RKHS define function spaces, and it turns out one can optimize certain problems on these spaces (e.g. find the function in the space which gives the smallest error in an empirical risk minimization problem), using a key result called the 
. The theorem states that if the objective only depends on the evaluations of the function on a set of 
n
 points 
x_i
, and increases with the RKHS norm of the function, the optimal function will be in the linear span of the mapped functions in the RKHS, 
K(x_i,\cdot)
, thus reducing the problem to an optimization on 
\mathbb{R}^n
, which is much easier. The condition on the RKHS norm is easy to verify if you add this norm as a 'regularizer' in your objective, and this will have the benefit of controlling the smoothness (the 'complexity') or your function.


As an example, say you want to learn a regression function 
f
 in some RKHS 
\mathcal{H}
 from a set of training points 
x_i
, then you can assume the function is of the form 
f(x) = \sum_i \alpha_i K(x_i, x)
, and you're left with an optimization problem on the vector 
\alpha
, whose dimensionality is equal to the size of your training set, even though 
\mathcal{H}
 might be of infinite dimensionality! This is typically what happens in kernel SVMs, and it is part of the reason why they've been originally so successful.

转载地址:http://keapi.baihongyu.com/

你可能感兴趣的文章
服务器端技术----Http请求的处理过程
查看>>
C语言-预处理指令2-条件编译
查看>>
C语言-预处理指令3-文件包含
查看>>
C语言-变量类型
查看>>
C语言-static和extern关键字1-对函数的作用
查看>>
C 语言-static和extern关键字2-对变量的作用
查看>>
【JavaScript 教程】浏览器—History 对象
查看>>
还不会正则表达式?看这篇!
查看>>
100道+ JavaScript 面试题,助你查漏补缺
查看>>
JavaScript深入理解之闭包
查看>>
这才是学习Vite2的正确姿势!
查看>>
7 个适用于所有前端开发人员的很棒API,你需要了解一下
查看>>
25个构建Web项目的HTML建议,你需要了解一下!
查看>>
【web素材】02-10款大气的购物商城网站模板
查看>>
6种方式实现JavaScript数组扁平化(flat)方法的总结
查看>>
如何实现a===1 && a===2 && a===3返回true?
查看>>
49个在工作中常用且容易遗忘的CSS样式清单整理
查看>>
20种在学习编程的同时也可以在线赚钱的方法
查看>>
隐藏搜索框:CSS 动画正反向序列
查看>>
12 个JavaScript 特性技巧你可能从未使用过
查看>>